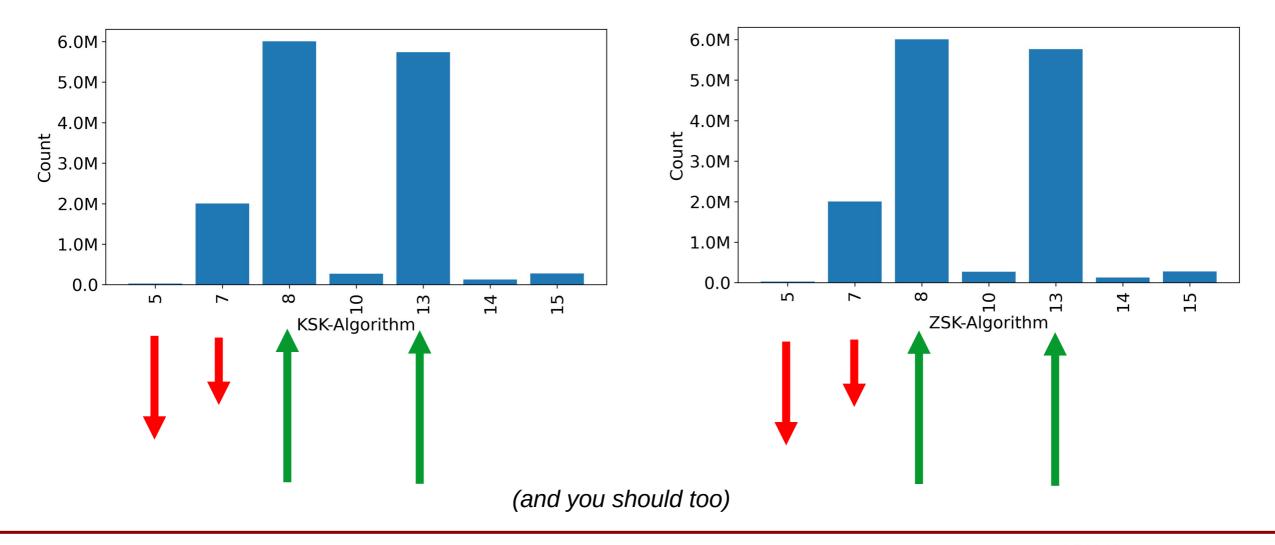
# Intentionally Temporarily Insecure

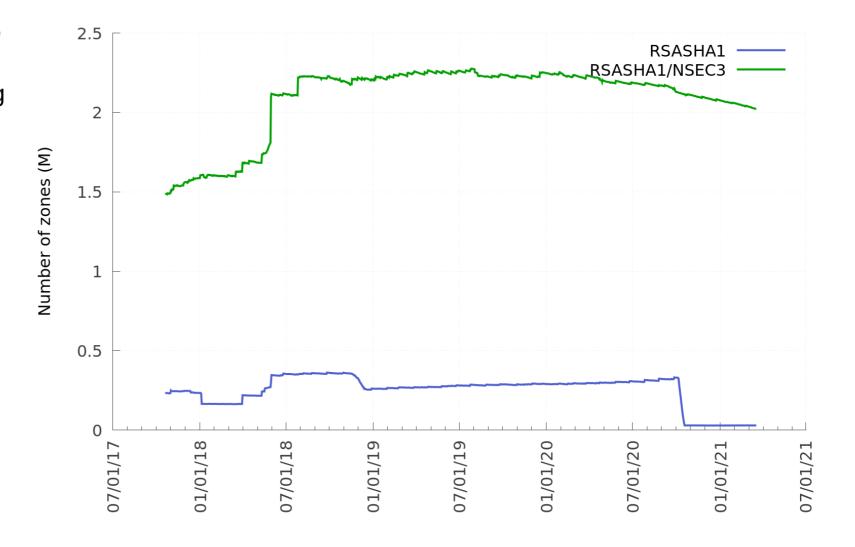
the cheater's guide to algorithm rolls

Wes Hardaker

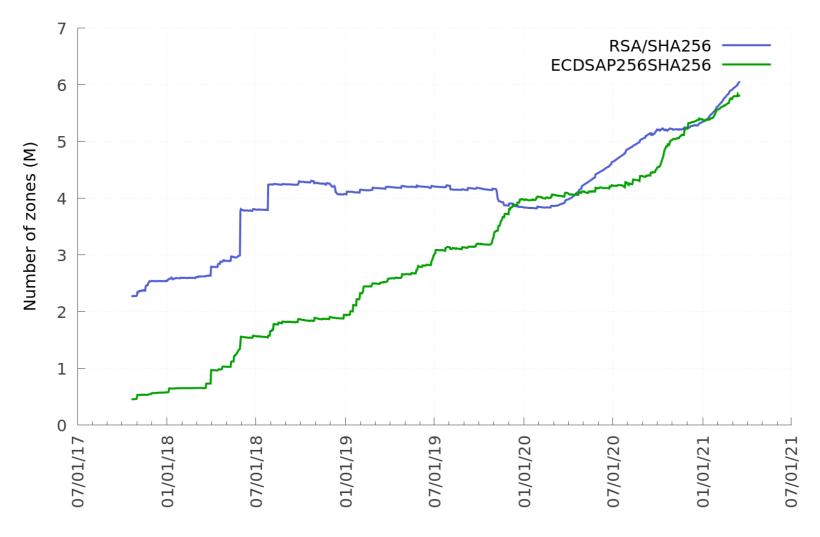

<hardaker@isi.edu>



### Algorithm Assignments and Software Recommendations


| Algorithm Number | Algorithm                      | RFC8624 Signing Recommendation |
|------------------|--------------------------------|--------------------------------|
| 1                | RSA/MD5                        | MUST NOT                       |
| 5                | RSA/SHA1                       | NOT RECOMMENDED                |
| 7                | RSA/SHA1 w/ NSEC3              | NOT RECOMMENDED                |
| 8                | RSA/SHA256                     | • MUST                         |
| 10               | RSA/SHA512                     | NOT RECOMMENDED                |
| 12               | GOST R 34.10-2001              | MUST NOT                       |
| 13               | ECDSA Curve P-256 with SHA-256 | • MUST                         |
| 14               | ECDSA Curve P-384 with SHA-384 | • MAY                          |
| 15               | Ed25519                        | RECOMMENDED                    |
| 16               | Ed448                          | • MAY                          |

#### Current DNSSEC algorithm popularities




### The fall of the older algorithms

- RSASHA1 is beyond "decline"
- RSASHA1/NSEC3 is declining



### The fall of the older algorithms



#### **Current popular algorithms:**

- RSA/SHA256 (8)
- ECDSA P-256 SHA256 (13)

### **Algorithm Recommendations**

- If you're starting a new zone today:
  - Pick algorithm RSA/SHA256 (8) or ECDSA P-256 SHA256 (13)
  - Note: signature sizes of RSA/SHA256 are larger than the ECDSA algorithm
- If you're still using RSA-SHA1 or RSA-SHA1/NSEC3:
  - It's time to switch to RSA/SHA256 (8) or ECDSA P-256 SHA256 (13)

• But... how?

### The Right Way - RFC6781 Section 4.1.4

1) Create the new DNSKEYs with the new algorithm

(both KSK and ZSK)

- BUT DON'T PUBLISH IT!!
- 2) Sign the zone with both the old DNSKEYs and new DNSKEYs
  - BUT FOR THE NEW DNSKEY PUBLISH ONLY THE RRSIGs, not the DNKSEY itself
  - Wait ... for a RRSIG TTL length

(really: 2x TTL for safety)

- 3) Publish the zone with a new DNSKEYs
  - Wait for a RRSIG TTL length
- 4) Publish the new DS record and remove the old DS record in the parent
  - Wait for a DS TTL length
- 5) Remove the old DNSKEYs from the zone
  - Wait for a RRSIG TTL length
- 6) Remove the old DNKSEYs RRSIGs

### The Wrong But Acceptable Way - Cheat!

1) Remove all DS records from the parent

You'll be "insecure"

- 2) Wait for DS TTL seconds
- 3) Replace the old DNSKEYs with your new ones
- 4) Wait for the zone's negative cache time
- 5) Add the new DS record to the parent

You're now secure again

Optionally: reduce your TTLs before performing these steps

(its typically not possible to reduce the parent's DS TTL though)

#### Comparisons

#### Pros/Cons

PRO: "cheating" is operationally much simpler

- **PRO:** Less prone to human mistakes

- **CON:** temporarily transitions the zone out of DNSSEC protection

- When should you consider cheating?
  - When you are not using a automated DNSSEC software suite that does this for you
  - When you are more concerned about stability vs security
    - What's your threat model?
- When should you update to newer algorithms?
  - Now

## Questions?

